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Ocean acidification poses a range of threats to marine invertebrates; however,

the potential effects of rising carbon dioxide (CO2) on marine invertebrate

behaviour are largely unknown. Marine gastropod conch snails have a modified

foot and operculum allowing them to leap backwards rapidly when faced with

a predator, such as a venomous cone shell. Here, we show that projected near-

future seawater CO2 levels (961 matm) impair this escape behaviour during a

predator–prey interaction. Elevated-CO2 halved the number of snails that

jumped from the predator, increased their latency to jump and altered their

escape trajectory. Physical ability to jump was not affected by elevated-CO2 indi-

cating instead that decision-making was impaired. Antipredator behaviour was

fully restored by treatment with gabazine, a GABA antagonist of some invert-

ebrate nervous systems, indicating potential interference of neurotransmitter

receptor function by elevated-CO2, as previously observed in marine fishes.

Altered behaviour of marine invertebrates at projected future CO2 levels could

have potentially far-reaching implications for marine ecosystems.
1. Introduction
The oceans have absorbed about a third of all anthropogenic carbon dioxide

(CO2) emissions released into the atmosphere since the beginning of the Indus-

trial Revolution [1]. As a result, surface oceans are now 0.1 lower in pH and 30%

more acidic than that before the Industrial Revolution [2] and the rate of change

is approximately 100 times faster than any period in the last 650 000 years [3,4].

Additionally, the partial pressure of CO2 ( pCO2) in the surface ocean is increas-

ing in line with rising atmospheric CO2 [5]. Based on current and projected

future CO2 emissions, ocean pH could decline a further 0.3–0.4 units [2] and

pCO2 levels could exceed 900 matm by the end of this century [6].

Marine ecosystems are threatened by this increasing CO2 enrichment of the

oceans [5,7] with concern focused primarily on the effect of ocean acidification

and reduced carbonate saturation state on the growth and development of cal-

careous marine invertebrates [8,9]. In calcareous invertebrates, elevated-CO2

and ocean acidification can have a range of negative effects, including disturb-

ance of extracellular ion and acid–base regulation [10], and reductions in

growth, calcification and survival (reviewed in [11–14]). In marine fishes, elev-

ated-CO2 also has dramatic effects on behaviour; including altered olfactory

[15,16] and auditory preferences [17], loss of behavioural lateralization [18]

and an inability to learn [19]. Juvenile fishes become less risk averse [20,21],

even becoming attracted to, rather than repelled from the odour of predators

[22]. In fishes, these behavioural effects are caused by interference to the

function of type A g-aminobutyric acid neurotransmitter receptors (GABAA

receptors) [23], possibly as a result of the compensatory changes in trans-

membrane chloride (Cl2) and bicarbonate (HCO3
22) ion gradients that occur

during acid–base regulation in fishes exposed to elevated-CO2 [24,25]. Upon
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GABA binding to the GABA-gated ion channel, these changes

in ion gradients probably lead to the inappropriate action of the

GABAA receptor resulting in behavioural abnormalities [23].

Marine invertebrate behaviour at elevated-CO2 has been

little studied, except at very high seawater CO2 (pH 6.6–6.8,

equivalent to more than 12 000 matm pCO2). In an inter-

tidal snail, these very high CO2 levels resulted in reduced

morphological defences and increased avoidance of seawater

containing chemical cues from a predatory crab [26]. In

hermit crabs, very high CO2 decreased either the likelihood

or speed that crabs would upgrade from a suboptimal to opti-

mal gastropod shell, decreased resource assessment measured

by antennular flicking rates [27] and disrupted chemoreception

which resulted in a reduced ability to locate food odour and

reduced locomotory activity [28]. Remarkably, the behaviour

of marine invertebrates at near-future CO2 levels projected

for the end of this century and any potential mechanism

for altered behaviour have been little explored [29]. GABAA

receptors are phylogenetically old with GABAA-like recep-

tors occurring in diverse invertebrate groups, including

molluscs [30,31]. This suggests that invertebrate behaviours

and nervous systems could be affected by near-future CO2

levels in a similar way to fishes. Invertebrates are critical for

the function of all marine ecosystems [32–34] and their

behaviours shape the outcome of key ecological processes

[35–37]. Marine invertebrates also sustain fisheries worth

over 57 billion US dollars per annum [38]. Consequently, any

effects of near-future CO2 levels on the behaviour of marine

invertebrates could have far-reaching implications for marine

biodiversity and fisheries productivity [39].

The ability to detect and evade predators is critical to the

survival of all organisms. In aquatic systems, chemoreception

plays a particularly important role in sensing predators [40].

Eavesdropping prey are able to exploit predator kairomones

(chemosensory cues that provide an adaptive benefit for the

interspecific receiver, but not the emitter) resulting in a wide

range of antipredator behaviours [41]. In molluscs, predator-

avoidance behaviours include climbing, crawl-out and general

‘move away’ behaviours [42,43]. However, some molluscs

exhibit dramatic predator-escape behaviours. Marine snails

from the family Strombidae (conchs) have a modified foot

and operculum used in shell-righting to flick themselves over

and to escape predators by ‘leaping’ or ‘jumping’ away rapidly

with a kicking motion [44,45]. Their typical response to a mol-

luscivorous cone shell predator is to jump quickly out of range

of the venomous cone shell dart (see the electronic supplemen-

tary material, video S1). This violent escape response occurs

upon detection of predator kairomones [40,46,47]. A single

leap results in an immediate increase in distance from a poten-

tial predator [48] of about one body length (shell height) and

field observations demonstrate that this behaviour enhances

survival [49].

To determine whether near-future CO2 levels affected this

vital escape behaviour, we assessed the antipredator-escape

response of a jumping conch snail Gibberulus (previously

Strombus) gibberulus gibbosus to its cone shell predator Conus
marmoreus under current-day ‘control’ and near-future ‘elev-

ated-CO2’ conditions (405 and 961 matm pCO2, respectively).

We used a series of six experiments to test in detail the effects

of elevated-CO2 on escape behaviour of the snail and the mech-

anisms involved. (i) First, we used a self-righting experiment to

test whether elevated-CO2 affected fundamental exercise be-

haviour, which might cause snails to jump less. (ii) Next, we
placed snails in a test arena with a venomous cone shell pred-

ator to test whether elevated-CO2 affected predator-escape

behaviour. (iii) We measured snail oxygen consumption rate

at rest and during jumping to determine whether elevated-

CO2 altered the metabolic cost of jumping. (iv) We then treated

snails with the GABA antagonist gabazine (SR 95531) to assess

the potential involvement of the nervous system in the

responses observed at elevated-CO2, as recently demonstrated

in marine fishes [23]. (v) Additionally, we tested whether elev-

ated-CO2 could affect the predator cue directly. (vi) Finally, we

tested the duration of exposure to elevated-CO2 required to

impair snail behaviour in order to understand whether short-

term fluctuations in CO2, for example diel cycles on coral

reefs, could induce impaired predator-escape behaviour.
2. Material and methods
(a) Experimental system and seawater manipulation
The herbivorous gastropod mollusc G. (previously Strombus)

gibberulus gibbosus and its specialist mollusc-eating predator

C. marmoreus occur in sandy subtidal areas around tropical

coral reefs. Prey snails and cone shell predators were collected

throughout October and November from the Lizard Island

Lagoon, Great Barrier Reef, Australia (148410 S, 1458280 E) and

transferred to an environmentally controlled aquarium facility

at Lizard Island Research Station. Prey snails were assigned ran-

domly to four replicate control (405 matm pCO2) or four replicate

elevated-CO2 (961 matm pCO2) aquaria. Twenty snails were

housed in each 32 l (380 L � 280 W � 300 H mm) aquarium.

These snails feed on algal film which was abundant on the sur-

faces of each aquarium. Snails were kept for 5–7 days in captivity

after which they were tested. Fresh snails were collected for each

experiment, handled and housed identically. Each aquarium was

supplied with control or elevated-CO2 seawater at 720 ml min21.

Elevated-CO2 seawater was achieved by dosing with CO2 to a set

pH, following standard techniques [50]. Seawater was pumped

from the ocean into 2 � 60 l header tanks where it was diffused

with ambient air (control) or 100% CO2 to achieve the desired pH

(elevated-CO2 treatment). A pH-controller (Aqua Medic, Germany)

attached to the CO2 treatment header tank maintained pH at the

desired level. Seawater pHNBS (HQ40d, Hach, Loveland, CO,

USA) and temperature (C22, Comark, Norwich, UK) were recorded

daily in each aquarium and seawater CO2 confirmed with a porta-

ble CO2 equilibrator and infrared sensor (GMP343, Vaisala,

Helsinki, Finland). Water samples were analysed for total alkalinity

by Gran titration (888 Titrando, Metrohm, Switzerland) to within

1% of certified reference material (Prof. A. Dickson, Scripps Insti-

tution of Oceanography). Carbonate chemistry parameters

(table 1) were calculated in CO2SYS [51] using the constants K1,

K2 from Mehrbach et al. [52] refit by Dickson & Millero [53], and

Dickson for KHSO4.
(b) Behavioural experiments
After 5–7 days in control or elevated-CO2 treatment aquaria, snail

behaviour was tested in six separate experiments (see the electronic

supplementary material, table S1). All trials were videographed

with a Panasonic Lumix DMC-FT3 or Canon Powershot G15

digital camera and behaviour was quantified subsequently from

videos. All behavioural and respirometry trials were conducted

in seawater at the same CO2 level as the experimental treatment

of the snail tested (i.e. control or elevated-CO2). Mean shell

height (+s.e.) was 35.95+0.20 mm, shell width 17.85+
0.12 mm and total animal wet mass 5.74+0.09 g (wet mass on

shell height F1,107 ¼ 273.80, p , 0.0001, r2 ¼ 0.7164, total animal

http://rspb.royalsocietypublishing.org/


Table 1. Seawater carbonate chemistry for each treatment. (Values are means+s.e. to nearest integer, one or two decimal places as appropriate.)

treatment
temperature
(88888C) salinity pHNBS

total alkalinity
(mmol kg21 SW)

pCO2

(matm) VCa VAr

control 27.0 (+0.2) 35.2 8.17 (+0.01) 2275 (+7) 405 (+11) 5.27 (+0.09) 3.50 (+0.06)

elevated-CO2 27.0 (+0.2) 35.2 7.85 (+0.01) 2257 (+2) 961 (+13) 2.85 (+0.04) 1.89 (+0.02)
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wet mass ¼ 0.440 (shell height) 2 10.1 (3 s.f.)). Shell mass

comprised 80% of the whole animal wet mass.

(i) Experiment 1: effect of elevated-CO2 on exercise ability
To test whether elevated-CO2 affected fundamental exercise be-

haviour, we placed control and CO2 snails upside down and

recorded the time taken and number of foot flicks required

for the animal to self-right. The test arena consisted of a large

circular tank (diameter 1040 mm), with a 50 mm deep sand sub-

strate, filled with seawater to a depth of 200 mm above the sand.

A total of 40 control and 40 CO2 snails were tested individually

for self-righting.

(ii) Experiment 2: effect of elevated-CO2 on predator-escape
behaviour

To test the predator-escape response of control and CO2 snails,

we placed a single snail in the centre of the test arena described

above after recording its self-righting behaviour. The snail

was placed 10 mm in front of a thin transparent plastic barrier

(100 L � 80 H mm) with a cone shell predator 10 mm behind

the barrier. Predator and prey anterior ends faced each other

and behaviour was recorded for 5 min. The barrier functioned

to prevent a successful predatory attack should the snail fail to

escape the predator. A total of 40 control and 40 CO2 snails were

tested. The following traits were measured by video analysis:

number of jumps during 5 min, latency to first jump, final distance

from the predator and angle of escape trajectory [54] after 5 min.

Only two individuals (both controls) out of the 40 control and 40

CO2 snails reached the wall of the test arena during experimen-

tation, demonstrating that the test arena was big enough to

capture the complete predator-escape response of 97.5% of all indi-

viduals. Difficulties with videographing meant not all traits could

be measured for all snails and sample sizes for each trait are shown

in the electronic supplementary material, table S1. We noted that

the cone shell predator successfully captured and consumed the

prey snail when kept in an aquarium together overnight, but

only after the prey snail stopped jumping. To compare the jumping

behaviour in the absence of a predator, another 20 control and 20

CO2 snails were tested using the procedure described above, but

without a cone shell predator in the arena.

(iii) Experiment 3: effect of elevated-CO2 on oxygen consumption
Snail oxygen consumption rate ( _MO2) was measured by closed

respirometry to determine whether exposure to elevated-CO2

had an effect on the metabolic cost of jumping. Snails held for

5–7 days in control or elevated-CO2 were transferred to individ-

ual 250 ml respirometers (80 Ø � 50 L mm). Jumping was then

induced by the injection of 50 ml of seawater containing chemical

cues from a predatory cone shell. Predator-conditioned seawater

‘predator cue’ was made by placing one cone shell (length ca
60 mm, wet mass ca 45–50 g) in 2 l of seawater for 10–20 min.

The cone shell was then removed and the predator cue was

mixed well before a 50 ml cue subsample was taken. Pilot

measurements determined the volume of predator cue required

for the experiments given the concentration of cue and the sub-

sequent dilution in seawater. The 50 ml of predator-cued
seawater was injected through a small hole in the respirometer

using a syringe and fine tube. The tube extended the full internal

length of the respirometer so that the predator cue was released

at the far side of the chamber. Any excess seawater was extruded

through the same hole so that the final volume remained at

250 ml. The hole was then sealed. The number of jumps made

by the snail and duration of jumping was recorded. If jumping

did not begin within 2 min of predator cue injection, the trial

was terminated, and a new snail was introduced to the respirom-

eter. Seawater oxygen concentration was measured with a

galvanometric oxygen probe (OXI 340i, WTW, Germany) and

recorded with PowerLab 4/20 using CHART v. 5.4.2 software

(ADInstruments). Mixing of seawater within the respirometer

was achieved by a small propeller attached to the tip of the

probe and powered by a magnetic plate placed near the respi-

rometer. Blank respirometers with no snails were run to

measure the background oxygen consumption (microbial _MO2 )

both before and after the actual experiment, using new treatment

seawater and no snail before the trial, and after taking out the

snail at the end of the trial. _MO2 data are reported per unit

wet tissue mass and all measures were corrected for the average

microbial _MO2 in the respirometer before and after the trial (less

than or equal to 10%).

The jumping escape response, elicited by injection of preda-

tor cue, caused an immediate and large increase in _MO2,

which remained elevated until jumping ceased. Active oxygen

consumption ( _MO2 active) was determined as the _MO2 measured

during jumping. When jumping stopped for at least 3 min, the

respirometer seawater was replaced with fresh treatment sea-

water containing no predator cue, so that jumping was no

longer stimulated and oxygen consumption was recorded for a

further 3–5 h. Pilot measurements showed that this duration

was sufficient for _MO2 to return to resting levels. Resting

oxygen consumption ( _MO2 rest) was therefore determined from

the lowest _MO2 during this period. _MO2 rest was subtracted

from _MO2 active to give aerobic scope. The aerobic cost per jump

was calculated as

cost per jump ¼ ð
_MO2 active � _MO2 restÞ � time spent jumping

total number of jumps
:

(iv) Experiment 4: effect of the GABA antagonist gabazine
on behavioural responses at elevated-CO2

To examine the possible involvement of neurotransmitter recep-

tors in altering escape behaviour in elevated-CO2-exposed snails,

we treated conch snails with gabazine and then tested their

response to a predator cue. Gabazine (SR 95531) is a GABAA

neurotransmitter receptor antagonist known to inhibit GABA

binding to GABAA receptors in vertebrates [55], and has also

been found to inhibit GABA-induced ion currents or GABA

binding to receptors in some invertebrates, including insects

[56,57] and a hydrozoan [58,59]. Although the pharmacology

of gabazine has not been studied in molluscs, gabazine has

been shown to restore normal behaviour in fishes exposed to

elevated-CO2 and, therefore, provides a useful starting point

for testing the possible mechanisms responsible for altered be-

haviour in marine organisms exposed to elevated-CO2. If

http://rspb.royalsocietypublishing.org/
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gabazine restores predator-escape behaviour in the conch snail, it

may suggest that a similar mechanism could potentially be

responsible for impaired escape behaviour at elevated-CO2 in

both fishes and molluscs. Using a fully crossed design, we first

individually placed 30 control and 30 CO2 snails for 30 min in

100 ml seawater containing 4 mg l21 of gabazine or 100 ml sea-

water without gabazine (sham treatment). Snails were then

removed from the treatment containers and placed individually

in 2 l of seawater in small plastic aquaria (200 L x 130 W�150

H mm). After 2 min acclimatization, 70 ml of seawater was

added to control for the physical addition of water. No snails

jumped during acclimatization or with the addition of plain sea-

water. At each subsequent 2 min interval, 70 ml of predator cue

was added to stimulate the initial and continual presence of a

molluscivorous cone shell predator and to compensate for any

degradation of the cue, and any snail jumps were counted. A

total of six predator cue additions were made over 12 min. For

this experiment, predator cue was made by placing one cone

shell (length ca 60 mm, wet mass ca 45–50 g) in 3 l of seawater

for 10 min. The cone shell was then removed and the predator

cue was mixed well before each 70 ml cue subsample was taken.

(v) Experiment 5: effect of elevated-CO2 on predator cue
To test whether elevated-CO2 seawater could have affected the

predator cue directly, and thus altered the jumping response,

the jumping response of control snails presented with the predator

cue made by placing a cone shell predator in control seawater was

compared to the jumping response of control snails given a pred-

ator cue made by placing a cone shell predator in elevated-CO2

seawater. This experiment was performed using the method

described in experiment 4, except no gabazine was used. For com-

parison with the previous experiment, snails were placed in 100 ml

seawater without gabazine (sham treatment), and then placed

individually in 2 l of seawater, where 70 ml aliquots of first plain

seawater, and then predator cue were added. Of 30 control

snails, 18 were exposed to predator cue made in control seawater

and 12 were exposed to predator cue made in elevated-CO2 sea-

water. If elevated-CO2 (low pH) seawater affected the chemical

cue, we predicted there would be a difference in the jumping

behaviour of the two groups.

(vi) Experiment 6: effect of exposure time to elevated-CO2

on behaviour
Finally, to examine the exposure time to elevated-CO2 required

to alter behaviour, snails were exposed to control or elevated-

CO2 for different time periods. For this experiment, snails were

held for a total of 5 days in experimental aquaria in one of four

treatments: (i) control seawater (n ¼ 18); (ii) control seawater

switched to elevated-CO2 in the final 12 h (n ¼ 12); (iii) control

seawater switched to elevated-CO2 in the final 2 days (n ¼ 12);

and (iv) elevated-CO2 seawater (n ¼ 18). After 5 days, the indi-

vidual jumping response of each snail to the predator cue was

then measured, as described in experiment 4 and using a sham

treatment for comparison as described in experiment 5.

(c) Statistical analysis
Parametric tests (t-tests and ANOVA) were used to test latency to

first jump, the number of jumps and distance moved (for jumpers

only), oxygen consumption and for the predator cue experiments.

A Mardia–Watson–Wheeler test was used to compare the circular

distributions of escape trajectories. Mann–Whitney U-tests were

used where data did not fit parametric assumptions, including for

self-righting behaviour, and the number of jumpers and distance

moved from the predator for all snails, because data included non-

jumpers. Snails were used once for either: (i) self-righting and then

the predator–prey interaction, (ii) one of the predator cue response
trials, or (iii) respirometry (see the electronic supplementary

material, table S1). All reported p-values are two-tailed.
3. Results
Elevated-CO2 did not affect self-righting ability, and therefore

did not affect fundamental exercise behaviour in this marine

mollusc. There was no difference in the time taken for upturned

snails to right (mean+ s.e. control 39.2+3.4 s, elevated-CO2

33.8+3.4 s, U ¼ 638.0, n ¼ 40,40, p ¼ 0.119) or the number of

foot flicks required to right (mean+ s.e. control 2.7+0.3, elev-

ated-CO2 2.3+0.2, U ¼ 736.0, n ¼ 40,40, p ¼ 0.525) between

control and elevated-CO2-treated snails. By contrast, antipre-

dator-escape behaviour was altered by elevated-CO2. When

snails were placed in a circular test arena in front of a cone

shell predator, the majority of control snails (65%) jumped,

compared with only 33% of elevated-CO2 snails (x2 ¼ 7.922,

n ¼ 79, p ¼ 0.005; figure 1). For snails that did jump, elev-

ated-CO2 nearly doubled the latency to first jump from

60+9 s (mean+ s.e.) in control to 100+21 s in elevated-

CO2 snails (t37 ¼ 22.032, p ¼ 0.049). Among jumpers, the

escape trajectory also changed such that elevated-CO2 snails

moved on an angle closer to the predator (84+68 circular

mean+ s.e.) compared with control snails (109+108)
(W ¼ 6.207, N ¼ 22,13, p ¼ 0.045; figure 2). Snail size (wet

mass) had no effect either on self-righting time (F1,78 ¼ 0.267,

p ¼ 0.607, r2 , 0.001) or on the number of jumps from a

predator (F1,74¼ 0.0316, p ¼ 0.859, r2 , 0.001).

As fewer elevated-CO2 snails jumped when faced with a

predator, the average number of jumps per snail (U ¼ 478.5,

n ¼ 38,39, p ¼ 0.004) and the average distance moved from

the predator (U ¼ 370.0, n ¼ 38,37, p , 0.001) were reduced

for all elevated-CO2 snails compared with all control snails

(figure 3). However, the elevated-CO2 snails that did jump,

jumped as many times (t35 ¼ 1.499, p ¼ 0.143) and as far

(t35 ¼ 1.673, p ¼ 0.103) as control snails (figure 3). As a result,

there was no difference in the mean (+s.e.) distance moved

per jump between control (30.4+1.4 mm) and elevated-CO2

(31.7+2.3 mm) snails (t35 ¼ 20.511, p ¼ 0.612), which was

equivalent to just less than one body length (shell height). On
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average, jumpers moved a total distance of more than 20 cm

away from the predator, equivalent to over five times their

body length (shell height) and beyond immediate reach of

the cone shell.

Elevated-CO2 did not affect the metabolic cost of jumping.

Snail oxygen consumption measured by respirometry was

unaffected by elevated-CO2. Resting oxygen consumption

did not differ between control and elevated-CO2 snails (see the

electronic supplementary material, figure S1A; t38¼ 20.537,

p¼ 0.594), and more importantly, the aerobic scope of jumping

snails (i.e. the difference in oxygen consumed during rest and

during jumping) was not affected by elevated-CO2 exposure

(see the electronic supplementary material, figure S1B; t23 ¼

1.045, p ¼ 0.307). As a result, the amount of oxygen used per

jump (a proxy for the energy used or cost per jump) was not

altered in snails exposed to elevated-CO2 (see the electronic

supplementary material, figure S1C; t16 ¼ 0.639, p ¼ 0.532).

Jumping was restored to control levels by treatment with

gabazine. The total number of jumps per snail in the elev-

ated-CO2 group was less than half that of control snails

(F3,56 ¼ 3.237, p ¼ 0.029, post hoc p ¼ 0.012) over the 12 min

period (figure 4). By contrast, there was no difference in the

total number of jumps for elevated-CO2 snails treated with

gabazine when compared with controls (post hoc p ¼ 0.852;

figure 4). Gabazine did not stimulate jumping per se because

control snails treated with gabazine showed no statistical

difference in jumping when compared with control snails

treated with a seawater sham (post hoc p ¼ 0.130).

The results of the gabazine experiment indicate that

there was no effect of elevated-CO2 directly on the odour cues

from the predator, because elevated-CO2 snails treated with

gabazine jumped in response to predator cue presented in

elevated-CO2 seawater (figure 4), indicating an ability to detect

and respond to the predator cue in this treatment group.
Furthermore, when control snails were tested, the percentage

of jumpers was no different when predator cue was presented

in either control or elevated-CO2 seawater (t10 ¼ 20.212, p ¼
0.837; electronic supplementary material, figure S2). These

results demonstrate that the predator cue was not altered by
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exposure to mildly acidified seawater. Finally, it took between 2

and 5 days exposure to elevated-CO2 to elicit the behavioural

effects on the snails (figure 5). Snails exposed to elevated-CO2

for 12 h or 2 days exhibited a similar total number of jumps to

controls, whereas snails exposed to elevated-CO2 for 5 days

exhibited a significant decrease in the total number of jumps

(F3,56¼ 3.450, p ¼ 0.022, post hoc p ¼ 0.014).
4. Discussion
Our findings show that CO2 concentrations projected to occur

in the oceans by the end of this century [6] may have impor-

tant effects on the behaviour of a marine mollusc. In this case,

961 matm pCO2 altered the behavioural decisions of a coral

reef conch snail when faced with a predator. Elevated-CO2

impaired the predator-escape response in this jumping snail

by potentially affecting decision-making, while the physical

ability to jump, and therefore capacity to escape, was

retained. Elevated-CO2 reduced the number of snails that

jumped from the predator, and also altered behaviour in

snails that did decide to jump by increasing the time taken

to jump, thus increasing the exposure time to the predator,

and by changing the escape trajectory such that the snail

moved on an angle closer to the predator. Combinations of

behavioural changes such as these are likely to alter complex

trophic interactions in marine food webs.

While previous studies have reported altered behaviour

in crabs and a mollusc at extremely high CO2 levels (more

than 12 000 matm) [26–28], our results show that CO2 levels

projected to occur in the surface ocean by 2100 can signifi-

cantly impair predator-escape behaviour, with implications

for the outcome of predator–prey interactions. Our findings

of behavioural modifications in a marine mollusc at near-

future CO2 levels are significant because invertebrates, such

as molluscs and crustaceans, are fundamental to marine eco-

systems; they dominate lower trophic levels that support

marine food webs [60], they are ecosystem engineers [61] and

they are keystone species in ecological interactions that shape

the structure of marine communities [36]. Altered behaviour

of marine invertebrates caused by elevated-CO2 has the
potential to modify the outcome of key ecological interactions,

with potentially far-reaching consequences for ecosystem func-

tion. Nevertheless, the effects of elevated-CO2 on ecological

interactions may vary among species or with CO2 levels. In

hermit crabs, decision-making, resource allocation and loco-

motion are impaired at more than 12 000 matm CO2 [27,28]

and these results are consistent with our findings of impaired

behaviour in the conch snail at 961 matm CO2. By contrast,

Bibby et al. [26] found snails exhibited increased predator-

avoidance (crawl-out) behaviour in response to predator cue

at more than 12 000 matm CO2.

An additional challenge for organisms inhabiting coastal

and coral reefs ecosystems are the marked diel fluctuations

in carbonate chemistry parameters, including pH and CO2,

that can occur [62,63]. Organisms in some coral reef habitats

may already experience CO2 levels for several hours each day

that are at least as high as those projected for the open ocean

at the end of the century. However, we found that an

exposure time between 2 and 5 days to elevated-CO2 was

required to impair behaviour, suggesting that shorter term

exposure to elevated-CO2, for example during diel fluctua-

tions, would not affect behaviour or increase vulnerability to

predation at night. Nevertheless, the interaction between the

magnitude of CO2 variation and the exposure time to induce be-

havioural effects is important to consider when predicting

future impacts on marine systems [64]. As absorption of anthro-

pogenic CO2 continues, marine habitats with naturally variable

carbonate chemistry conditions will experience an amplification

of pCO2 relative to open-ocean conditions [65] and this could

potentially accelerate the onset of predicted responses of

marine organisms to increasing CO2 [64].

Our results indicate that interference with the function of

neurotransmitter receptors might be responsible for the com-

promised predator-escape behaviour of snails exposed to

elevated-CO2. Gabazine, a drug known to block GABAA recep-

tors in vertebrates [55] and GABAA-like receptors in some

invertebrates [56–59], has previously been found to restore

normal behaviour in fishes exposed to elevated-CO2 [23].

We found that gabazine was also effective in restoring the

antipredator jumping behaviour in elevated-CO2-exposed

snails. This suggests that molluscan GABAA-like receptors

[30,31] could be involved in the behavioural effects of elev-

ated-CO2 seen, although other mechanisms may be involved

because the pharmacology of gabazine has not been studied

in molluscs. If a similar mechanism is responsible for the be-

havioural effects of elevated-CO2 observed here in a marine

mollusc and in previous studies with fishes, then we might

expect elevated-CO2 could cause behavioural impairment in

a broad suite of marine animals, potentially including commer-

cially important groups such as molluscan and crustacean

shellfish, cephalopods and echinoderms. If the behavioural

effects of elevated-CO2 in marine invertebrates function in a

similar way to fishes, then there may also be marked differ-

ences among invertebrate species and individuals in how

they respond to elevated-CO2 [21,66], and this should be a

focus of future research.

This study highlights the potential for near-future ocean

acidification to alter behaviour in a marine mollusc; how-

ever, the potential for organisms to adapt to this problem is

unknown. New studies have detected genetic variation in the

effect of ocean acidification on growth and development of

some marine invertebrates [67,68], and there is, therefore,

potential for selection of more tolerant genotypes over coming
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decades in these species. Whether similar evolutionary poten-

tial exists for the behavioural traits tested here is unknown.

Selection for adaptive behaviours, particularly those involved

in life or death decisions, will be strong. Predator–prey inter-

actions and subsequent avoidance and escape behaviours

create a strong selective advantage for prey individuals that

respond appropriately. Escape responses can also be modified

through learning as demonstrated in the shell-less marine

mollusc Tritonia diomedea [69]. There was considerable variation

in behaviour among individual prey snails in our experiments,

with some elevated-CO2 snails jumping in response to preda-

tor presence, while most did not. Obviously, appropriate

escape behaviour will confer an immediate survival advantage.

Additionally, more subtle differences including increased time

to first jump and escape angle were subject to variation among

individuals. These differences among individuals could be

owing to phenotypic plasticity or they may indicate genetic

variation in CO2 sensitivities. Many escape responses in the

scallop Argopecten purpuratus have significant heritabilities

[70] but whether variation in behavioural responses to elev-

ated-CO2 is heritable is currently unknown. Further research

is required to determine whether variation in escape responses

in the conch snail caused by elevated-CO2 is heritable and

whether the spread of tolerant genotypes could possibly

occur quickly enough for evolution to rescue populations

from any negative effects of altered behaviour, such as potential

increased rates of predation.

In this study, we only tested the predator-escape behaviour

of the prey snail. Further studies are required to determine

whether elevated-CO2 alters the behaviour of predators, such
as cone shells, or their ability to capture prey including their

ability to produce toxic venom. Studies with fishes show that

the dynamics of predator–prey interactions can be altered in

different ways when only the prey, only the predator or both

are exposed to elevated-CO2 [71]. While we have demonstrated

a clear effect of elevated-CO2 on mollusc predator-escape be-

haviour, the precise effect this will have on mortality rates

will depend on how CO2-treated predators and prey interact

together under natural conditions.

We conclude that CO2 impairs decision-making in a

marine mollusc, and consequently alters key ecological beha-

viours associated with trophic interactions. As near-future

CO2 levels alter behavioural strategies and can cause a

reduction in wariness, predator avoidance, or escape behav-

iour, this could mean marine organisms become easier prey

for predators, including humans, to catch in the future.

Altered trophic interactions with rising CO2 may have impli-

cations not only for marine ecosystem dynamics and shellfish

industries but also for future food security. Determining the

extent of behavioural disturbance as well as estimating evol-

utionary potential in behaviour will now be critical for

predicting the future consequences of rising CO2 in both

marine fishes and invertebrates.
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